Resources search results " surface"

On Demand Webinar: Mud Management with the Multiflo Mudflo Pump
SEMCO Publishing
The webinar, moderated by North American Mining magazine editor Donna Schmidt, will feature Weir Minerals Australia applications engineering business manager AARON SCHOT, who will discuss diverse problems dealing with mud, sludge and spoils in mining and how they can be transported safely and efficiently across sites continuously without impacting machinery – and while minimizing personnel involvement in that process for greater miner safety. Hear more about the Multiflo Mudflo solution, its history, and how the pump can be integral to an advanced sites’ dredging plans. About Aaron Schot:Aaron, business manager for Applications Engineering at Weir Minerals Australia, joined the company as a graduate engineer after completing a Bachelor of Engineering (Mechanical) in 2014 at Queensland University of Technology (QUT). Since then, Aaron has held multiple roles within Weir Minerals working primarily with the Multiflo product, specializing in formulating the engineering design of electric and diesel dewatering pumping solutions for both domestic (Australia) and international customers across the mining, municipal and agriculture industries. During his tenure with Weir Minerals, Aaron has also completed a significant amount of work developing and designing new fuel management systems within the Hydrau-Flo™ brand. About the moderator:Donna Schmidt, editor of North American Miningmagazine and the globally focused Miners News weekly e-newsletter and news editor for The ASIA Miner, has been a part of the trade press community for nearly 18 years and has hosted a number of webinars for mining suppliers and partners on a various topics including digitalization, automation and site efficiency, among others. Part of the editorial staff of SEMCO Publishing, which is also home to titles such as Rock Products, Concrete Products and Cement Products magazines, has directed editorial at both NAM and MinersNews.net since their respective inceptions in 2021.
Process Control Training—Simulators Are Only Half the Story
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model.  Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:Process objective of each process system, comprising a group of unit operations.Process objective of each unit operation.Process chemistry and the variables affecting it.Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.Plant control loops, interlocks, and alarms.Safety issues related to the process and control schemes.Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks.Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training. 
PROCESS CONTROL TRAINING— SIMULATORS ARE ONLY HALF THE STORY
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model. Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:  Process objective of each process system, comprising a group of unit operations.  Process objective of each unit operation.  Process chemistry and the variables affecting it.  Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.  Plant control loops, interlocks, and alarms.  Safety issues related to the process and control schemes.  Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks. Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training.
Training Pays: Actual vs. Projected Start-Up Results
PERFORMANCE ASSOCIATES INTERNATIONAL
Developing a profitable mining venture is no small matter. It requires enormous initial investments in research, construction, and equipment. But a mineral processing plant does not run itself. Even with the best equipment and good ore quality, optimal results are dependent upon keeping the process running smoothly, avoiding process upsets, maintaining process variables in the desired range, and minimizing breakdowns and downtime. A highly trained workforce is an essential element in a successful, and profitable, start-up. The knowledge and abilities of plant operators and maintenance personnel can make or break an operation. Trained operators know what to look for during preoperational and routine inspections, allowing maintenance tasks to be planned and unexpected costly breakdowns avoided. Trained operators know what variables exist at different stages in the process and how to make appropriate adjustments in real time. Trained maintenance personnel are well acquainted with the plant equipment, and maintenance planners can schedule work and maintain a spare parts inventory to minimize downtime. Additionally, new operations that train their workforce just prior to plant commissioning can utilize their operators in the commissioning process. Having been trained and gained field experience through plant commissioning, operators are ready to hit the ground running once feed is introduced. A faster ramp-up means more earnings, more quickly. The cost of developing a proper training program is a small percentage of the overall engineering, procurement, and construction budget but it constitutes a large percentage of the gains realized from a successful start-up and ramp-up to full production. Performance Associates International (PAI) has designed and presented custom training programs for operators and maintenance personnel in metallurgical plants around the world for over 35 years. We are proud to have been part of the successful start-ups at Lundin Mining’s Eagle Mine, Vale’s Voisey’s Bay project, and Torex Gold’s El Limon-Guajes project. Click Download to view the actual vs. projected start-up results from these three metallurgical plants that made use of PAI’s custom-built training programs and on-site training.
Mining, Process Plant, Maintenance & Safety Training
PERFORMANCE ASSOCIATES INTERNATIONAL
Excellence in Mining, Process Plant, Maintenance, and Safety Training  Performance Associates International, Inc. (PAI) is the world leader in online and on-site training for the mining industry. We provide organizations with a single source for assessments, skills training, continuing education, safety training and compliance mandates, and more. Our first-class content guides your staff to gain the critical knowledge they need to work safely and efficiently today.  Our proven, leading-edge industrial training programs improve performance in existing operations and ensure success during the start-up of new operations. Our training programs have saved companies millions in personnel accident prevention, production loss, and equipment damage. We partner with our customers and consult collaboratively to provide the analysis and content development to meet your needs.  Services PAI Offers  Plant Operator Training Our three-tier concept for effective plant operator training starts with fundamental knowledge and progresses to plant-specific concepts that are reinforced through detailed animations and interactive simulations.  Maintenance Training We custom build state-of-the-art maintenance training programs using exploded graphics, explanatory text, detailed procedures, and management systems.  Mobile Equipment Operator Training Our first-class training program focuses on operator controls and indicators, safety, and performance optimization. It also includes operating, emergency, and troubleshooting procedures. Commissioning and Start-Up We can identify, track, and control the thousands of activities that must occur for the successful commissioning and start-up of a process plant. There is no shortcut to a successful start-up. Testing and Tracking Systems We can help manage and track the performance of employees to improve the overall performance of the mine and plant industrial training programs. Our testing and tracking systems provide invaluable assistance in safety and operational compliance.  Introductory and Safety Training Off-the-shelf introductory and safety training packages are an excellent source for mine and plant industrial training courses. They provide fundamental knowledge and basic training concepts. Now offering online courses! E-Learning, Animations, and Simulations Our interactive e-learning keeps trainees focused and engaged. Our experienced in-house multimedia team develops state-of-the-art graphics, virtual and mixed reality training, stunning 3D animations, and technically engineered simulations of real-world scenarios. Other Services We also provide many services relevant to planning, analyzing, and evaluating process plants, including: ·         Operations readiness plan. ·         Planning studies. ·         Quality management. ·         Systems implementation. ·         Statistical process control. ·         Reliability-based asset management. ·         Productive capacity studies. ·         Surveys and needs analyses. ·         Economic life analysis. ·         Process control strategies and methods. ·         Debottlenecking and process optimization. ·         Spare parts inventory and analysis. ·         Feasibility studies. ·         Consulting assistance. Consulting * Gap Analysis * Content Development * LMS * On-Site * Train-the-Trainer * E-Learning * Process Plant Optimization * Training * Safety * Mine Training * Plant Operator Training * Maintenance * Mobile Equipment * Competencies * Commissioning  
Get More Performance Out Of Your Crusher
Stedman Machine Company
Get More Performance Out Of Your Crusher impactor maintenanceThere’s an urban legend out there about the company whose maintenance crew mistakenly installed a new crusher with the rotor spinning backwards. It still worked! And you think you have issues? To get the most from your equipment investment, you need to put in the time. Yes, a crusher costs a bit more than your average automobile, but that doesn’t mean it’s maintenance-free. An automobile needs oil changes too, right? Performing regularly scheduled maintenance on impact crushers is crucial for guaranteeing day-to-day reliability and optimum product output. Did you know you can boost output and quality by doing just a little bit more? Even daily cleanups and inspections can increase service life. It’s a no-brainer, though possibly easier said than done. Here are some steps and practices to incorporate in your ongoing operations and maintenance. Beginning with maintenance team education, parts logs, and general maintenance record keeping, plus troubleshooting, these guidelines will help your crusher go the distance. Training: Proper training for consistent maintenance is one of the most fundamental requirements for successful, reliable production. Begin with the crusher’s operation and maintenance manual. Incorporate the manual’s suggested routine maintenance schedule into the maintenance team’s duties. Appoint a “lead person” for each crusher as the go-to for that machine. This person is the historian for the unique operational adjustments the producer has incorporated for raw feed and product requirements. Daily log (document the following every 8 hours): Amperage draw: See if it changes from day to day. If amperage is exceeding normal levels, it could be a signal of bearing problems, loose belts, or general feed issues. Coast-down time: You’re going to need to know (and log) how long it takes the machine to come to a complete stop after shutdown. Here’s why: If the time starts to shorten, this could indicate a bearing problem. Oil pressure: You’ll want to record performance in a variety of operating conditions. This will allow you to identify trends and help to detect problems before they cause costly damage or downtime. Daily maintenance (every 8 hours): Check oil level, sight glass, grease appearance, and other lubrication schedules. Check high temperature or low hydraulic pressure indicators and switches. Check wear parts. Tighten bolts. Inspect belts. Remove dirt and debris from crusher frame surfaces and areas around the machine. Check intake/discharge chutes for any obstructions and/or build up. Check alarms. If electrical changes are made or programs are altered in automated systems, verify that all alarms and interlocks function properly. Don’t be afraid to replace switches or timers that appear damaged or are in poor condition. This is more economical than a major overhaul, but never disable or alter any alarms or interlocks! Lubrication: Completely drain and thoroughly clean out the inside of the oil tank (if you have one) to eliminate any contaminants before refilling. Find contaminant sources. Contaminants such as dust particles and water can get in where oil leaks out. Inspect hydraulic systems and tag any leaks for corrective action on the very next maintenance cycle. Use the proper grade of oil. Use the proper specification of filters. Keep the oil breathers clean. Understand grease versus oil lubrication. Grease requires less-intensive maintenance than that of oil-lubricated systems. Automatic oil lubrication systems or sealed cartridge bearings are for higher speed crushers like vertical shaft impactors, air swept fine grinders, or high-speed cage mills. Most horizontal shaft impactors, hammer mills, and cage mill applications are below 1,000 rpm and grease is sufficient. Maintain a scheduled oil sampling program. By creating a baseline of normal wear, it helps indicate when abnormal wear or contamination is occurring. The exact condition of a mechanical assembly is reflected in the oil. Belts: Inspect V-belt drives for damaged belts or loose belt tension. By replacing cracked, glazed, torn, or separated belts, plus maintaining proper belt tension, you’ll optimize your plant’s performance. Wear parts: Don’t overextend wear parts. Avoid running them so long that they become too worn. You may find that you can no longer rotate breaker bars or interchange wear plates to lower wear areas — and now, you’ve lost half of the wear. Guards: Rubber and chain curtains located in the feed and discharge openings of the crusher are subject to wear and tear. Since they are a first line of protection, it’s important to inspect them regularly and to establish a schedule of regular maintenance. Electrical: When (or if) electrical changes are made, you’ll need to verify that all alarms and interlocks still properly function. Same goes for programs when altered in automated systems. Always check with the manufacturer before making any modifications. Spares recommendation: Keep the recommended spares on hand and order replacements as soon as they are used. A list of recommended spares may be included with your equipment operations manual. If not, contact the manufacturer for recommendations. Update your equipment: All equipment evolves, and the recommended manufacturer upgrades are a good investment for increased life and better crusher performance. Check with the manufacturer for any possible updates. Unapproved modifications: Manufacturer design engineers have considerable field experience, which helps them as they calculate the design and perform prototype testing. Their engineering tasks include calculating bearing loads and bearing clearances. They’ve also worked to maximize throughput by establishing the most efficient speed and setting combinations to optimize impact on the material undergoing reduction. So when plant personnel suggest modifications that alter the intended design, these changes will more than likely hurt the purpose of the original design. As a result, you’ll have a less productive and reliable crusher due to potential damage and overload. Since the manufacturer has a vested interest in how well the crusher performs, contact them before making any modifications Cage Mill Operation and Maintenance Requirements for optimum production and wear part utilization include the following: sleeve wear patterns cage wear pattern identification To increase multi-cage sleeve life, cage rotation should be reversed regularly, if possible. (Some cage mills can be reversed, while others cannot.) By reversing the cage direction, sleeves will be worn from both sides, thus extending wear life. Wear parts: Index and or replace sleeves periodically. Inspect or replace hopper ring and shaft protector, if needed. Cage rebuilding is an option. Bearings: Follow the manufacturer’s recommended specifications and schedule for lubrications, temperature, and vibration ranges of spherical roller bearings in pillow block housings. Horizontal Shaft Impactor Operation and Maintenance Variables affecting product gradation include the following: Rotor speed – Higher rotor speeds produce finer product output.Breaker bar wear & new edges crush finerBreaker bar changes. Apron gap settings – Closer gaps retain the feed longer producing a finer product. Breaker bar wear – Regular inspection and turning will lower operating costs. Throughput (tons per hour) – Overfeeding a crusher can make the output more coarse, but it also causes a number of wear and longevity issues making overfeeding a major concern to avoid. Moisture – Moisture cushions the impact, producing a coarser product. Apron wear – Worn plates can be replaced or moved to areas of lower wear. Spring bridge operation – Spring set height is critical to maintain proper operation of spring bridges. Spring bridges return the aprons to their original positions after an overload situation. The use of altered or non-specified springs can cause equipment damage or catastrophic failure. Requirements for optimum production and wear part utilization include the following: Protect inlet and outlet. Restrict maximum feed size. Maintain feed rate within allowable limits. Check rotor rotation. Use metal detection (required). Check for wear. Follow recommended breaker bar rotation setting sequence. Check rotor breaker bar, wedge, and stop block or jack screws. Check liners and breaker plates. Vertical Shaft Impactor Operation And Maintenance The vertical shaft impactor uses high rotor speeds (1,000 to 3,000 rpm) to apply high energies to the material, and since Energy + Material = Size Reduction, it can create sand from 2-inch feed. Requirements for optimum production and wear part utilization include the following: optimized parts in rotor tube Limit feed size. Use metal detection (required). Observe any vibrations with the use of continuously monitored vibration sensors. Listen to the equipment, if something sounds unusual, shut down and inspect. Limit recirculating product in a closed system. If using water for dust suppression, introduce it into the discharge area if possible. Introducing water in the intake will increase wear. Place weight match shoes opposite one another. The image above shows rotor tubes indexed 90 degrees providing a new wear surface. Wear parts include the following:recommended parts for vertical shaft impactors Shoes and tubes Anvil ring or other inserts Housing liners Rotor table liners and assembly Spares recommendation: Shoes (one complete set) Table liner Anvils (one complete set) Discharge plate The spare parts inventory shown above is recommended for vertical shaft impactors. Hammer Mill operation and Maintenance Up running hammer mills combine impact and shear to reduce material. Down running hammer mills primarily use shear by immediately taking feed to the screen or grate bars where hammers shear the material, until it passes through the openings. Requirements for optimum production and wear part utilization include the following: Lubricate bearings regularly. Regularly inspection (unclamp or unbolt front upper half housing for access to screens and hammers) liners, hammers, hammer bolts, rotor discs, grate bars, and screens. Spares recommendation: Hammers Screens Liners Grinding plate Summary A partnership begins between the manufacturer and the customer when the crusher is installed in the field. The manufacturer needs the customer’s help as much as the customer needs the manufacturer’s help to achieve the highest performance possible. Maintenance service after the sale, although mentioned last, is a central part of crusher system performance. And just in case, the manufacturer will have the people and the parts available 24/7 to assist with any problems. Regardless of the field application, the training of personnel is key to successfully and optimally operating equipment. For the size-reduction industry, crusher maintenance problems are mostly related to inadequate training. This exists at plants both large and small. The most effective education is a current and ongoing program for crews — and that’s what will result in legendary performance.
All You Need to Know About: Vertical Shaft Impactor (VSI) Primers
Stedman Machine Company
All You Need to Know About: Vertical Shaft Impactor (VSI) Primers By Eric Marcotte, Inside Sales Manager, Stedman Machine Company Vertical Shaft Impactor What Is VSI? All roads, you might say, lead to the Vertical Shaft Impactor (VSI) because these crushers make it possible to create roadways and just about everything else. Francis E. Agnew of California patented one of the first Vertical Shaft Impactors in 1927. His configuration stacked three VSIs atop each other to produce sand, thus starting the VSI evolution. Today, VSI crushers – and the folks who rely on them – have produced many configurations to include everything from the addition of cascading material into the crushing chamber, to air swept separation of lighter product. One version suspends the shaft from above like a sugar centrifuge. It’s also one of the most feature-patented crushers, so some of the things mentioned here might be unique to a single manufacturer. VSIs apply a large amount of energy to crush material and that’s why it’s one of the most versatile crusher configurations today. View our VSI Machine Specifications, and get a quote today! VSI Benefits When it comes to producing materials such as aggregate for road making, VSI crushers use a high-speed rotor and anvils for impact crushing rather than compression force for the energy needed for size reduction. In a VSI, material is accelerated by centrifugal force by a rotor against the outer anvil ring, it then fractures and breaks along natural faults throughout the rock or minerals. The product is generally of a consistent cubical shape, making it excellent for modern Superpave highway asphalt applications. The rotor speed (feet per minute) controls final particle size. The VSI’s high cubical fracture percentage maximizes first-pass product yield and produces tighter particle size distribution. It has a high-throughput capacity ideal for beneficiation (elimination of soft material). Properly configured the VSI accepts highly abrasive materials. It has simple operation and maintenance. You can quickly change product size by changing rotor speed or cascade ratio. Some models have reversible wear parts to reduce downtime. The VSI typically has low operating costs even in high-moisture applications because of reduced energy costs and low wear cost per ton. VSI Disadvantages There are some feed size limitations with a VSI because of the small feed area available in the center of the rotor. Tramp material in the feed such as gloves, tools, etc. can cause problems with imbalance. The high RPM and HP require careful balance maintenance such as replacing shoes on both sides of the rotor at the same time. High wear part cost may be a problem for some hard abrasive materials, but the VSI may still be the best option. VSI Applications Major limestone applications are for Superpave asphalt aggregates, road base, gravel, sand and cement. Industrial uses include: corundum, corundite, ferro silicon, glass, refractories, silicon carbide, tungsten carbide and zeolite. Mining applications include: bauxite, burnt magnesite, iron ore, non-ferrous metal ore, perlite and trona sulfate. VSIs are excellent for everything from abrasive materials to waste and recycling applications. Verticl Shaft Crushers VSI Crushing Method The VSI is typically used after a primary or secondary crusher. This makes a VSI ideal for making sand and for making coarse and medium aggregates for concrete/asphalt production. Feed size and characteristics will affect the application of a VSI. The feed size is limited by the opening in the center of the rotor. Normally less than 5-inch material is desired, but very large VSIs can handle up to 12-inch feed. Another feature that will affect application is moisture, which can make the feed sticky. Required production capacity is the final limiting criteria. Large primary horizontal shaft impactors can output up to 1600 TPH and more. 1000 TPH is about the maximum for a VSI because of the limiting motor size and the rising G-force of a high-speed rotor, which is calculated by multiplying the radius times the square of the RPM. Shoe configurations are many: rock on rock, groups of rollers, special tip wear parts and many others. The metallurgy of the shoes is also highly varied. Rotors can have three to six shoes. The number of shoes is typically governed by the diameter of the rotor. The larger the diameter rotor, the more openings are possible. Computational Fluid Dynamics (CFD) mathematical models are utilized to simulate the flow and collision forces to reveal solutions for lower wear cost, consistent final product, and higher energy efficiency. The material to be crushed is fed into the center of an open or closed rotor. The rotor rotates at high rpm, accelerating the feed and throwing it with high energy into the crushing chamber. When the material hits the anvil ring assembly, it shatters, and then the cubical shaped product falls through the opening between the rotor and the anvil and down to the conveyor below. The rotor speed (feet per minute) controls final particle size. Speeding up the rotor will produce more fines, slowing it down will produce fewer fines. Feeding Methods Center feed The typical VSI is fed, from above, into the center of its rotor. The material is then flung across an open void to the crushing chamber. It then impacts the outer anvil ring. This crushing action imparts very high energy to the material and is very effective on most types of material. It gives a very uniform and consistent grade of product. Cascade feeding V-Slam Impactors In cascade feeding, material bypasses the rotor and enters the crushing chamber from above. It’s called cascade feeding because as material fills up a large feed bowl, with an outer diameter larger than the outer diameter of the rotor, it spills over the side and falls into the crushing chamber from above, bypassing the rotor. The effect of increasing feed through cascade is similar to slowing the rotor. Cascade feeding in amounts up to 10 percent may have no effect on particle size distribution or quality. The product gradation curve and product shape will change, if an increased amount of cascade feeding is used. Vertical Shaft Impactor for Aggregates (Above: Vertical Shaft Impactor, No Cascade vs. With Cascade Feed, Particle Size Distribution Chart) Rotor and Anvil Configurations The VSI features multiple rotor/anvil configurations for various applications. From open or enclosed rotors to the tubular rotor, each machine is configured for their unique application. In many cases the rotor table, rotor assemblies, anvil ring or rock shelf are interchangeable, allowing maximum application flexibility. Crushers for Aggregate Industry Open top metal rotor shoe on metal anvil The open top metal rotor is good for large feed or medium to very hard material, but it will work best for softer materials. It can handle medium abrasive, dry or wet, but not sticky materials. High reduction ratios are common, which are excellent for sand and gravel production in closed loop systems. Shoe shape can change the production size range. A straight shoe face design produces finer product, and a curved shoe face design produces coarser material. Stedman VSI Impactor Tubular metal rotor shoe on metal anvil The tubular rotor creates higher tip-speeds, which increases first pass yield with tighter particle size distribution and also reduces the recirculation loads. One unique feature is that the rotor rotation is reversible, allowing wear on both sides of the tube. Rotating the tube itself one-quarter turn also doubles the wear. Vertical Shaft Impactor Benefits Enclosed metal rotor shoe on metal anvil The enclosed top plate on a rotor primarily prevents material from escaping from the top of the rotor, which could happen with an overfed open top rotor. Vertical Shaft Impactor Applications VSI Crushers (Above: Rock shelf when VSI at rest. In operation, the brown rock fills the chamber to the upper roof ring. Rock impacts rock in operation.) Enclosed autogenous rock rotor table on autogenous rock shelf Any time the material or rock is used as an impact wear surface the term autogenous is used. Putting a top on the rotor table and shoes allows autogenous use. During operation of the VSI, a bed of material can be designed to build up inside the rotor against each of the shoe wall segments. The bed, which is made up of material that has been fed to the rotor, extends to a wear tip. The bed protects the shoe wall segment from wear. Concerning the rock shelf anvil, it forms a near vertical wall of material upon which the accelerated material impacts. “Rock-on-rock” crushing reduces maintenance but can require up to 30 percent of material recirculation before meeting size requirements. Also, the rock shelf anvil absorbs energy that could otherwise be used for breaking, which may reduce efficiency. More RPM may be needed to achieve the same result as a solid metal anvil. Good for medium abrasive materials, rock-on-rock configurations of either or both rotor and anvil may produce consistent material with low-wear cost and can handle wet but not sticky conditions. Reduction ratios from 2:1 to 5:1 can be expected. It’s widely used for quarried materials, such as sand and gravel. Due to the many configurations of the VSI feed, rotor, anvil and open- or closed- system design; testing is the only way to ensure proper application of a VSI crusher. V-Slam Supplier Summary The VSI is one of the most versatile crushers available on the market today. Even with some limitations, like feed size and output capacity, VSI features have been and continue to be developed to maximize first-pass yields and lower operating costs. If you test your process on full-scale equipment before choosing your VSI, you won’t be disappointed. About the author: Eric Marcotte joined Stedman Machine Company and its affiliate Innovative Processing Solutions in 2010. He has a Mining Engineering Degree from the University of Kentucky.
DIFFERENTIAL ENERGY In Coal Blasting
Dyno Nobel
The primary benefit from the TITAN emulsion technology is being able to note on the post blast reports that no postblast NOx fumes were present. Additional benefits include increased water resistance, increased actual energy yield verses theoretical value, increased product sensitivity resulting in high order detonation, ability to control density, redistribution of energy, increased detonation pressure, same cost per loaded foot, greater fragmentation versus cast movement, and allowing emulsion to be loaded to a lower density in highwall row resulting in the same pounds stretched to a greater height. Success measurements in the overburden truck/shovel blasts included consistent productivity (bucket fill times and bucket volumes) even in harder material located below the sandy strata, reduced post blast NOx fumes based on fume classification chart, few shovel operator complaints, and equal or reduced drill and blast budget. Seventeen blasts were completed without NOx fumes. The pounds per loaded foot was reduced from 51.5 with 40/60 HANFO to 43.1-47.1 range loading TITAN XL 1000. The average difference lbs/ft = 12.36% when 7.6% was needed for cost neutral. Stemming height was reduced from 22 ft to 20 feet to improve surface material displacement. Success measurements in the coal blasts included no roll crusher plugs from slabs, improved shovel production through uniform fragmentation, and equal or reduced drill and blast budget. Ten blasts were completed over afive-week period with no post blast fumes. There was good material movement, uniform fragmentation and generally no complaints or negative comments from shovel operators. Average difference lbs/ft = 11.98% when 4.5% was needed for cost neutral. Pounds per loaded foot averaged 45.33 compared to 51.5 with HANFO.
Superior Maintenance Performance: Three Conditions - One Answer
PAUL D TOMLINGSON
I have attached a PowerPoint (PPT) presentation on how to implementing a Mine Maintenance Management Program. But before you study it please understand that superior maintenance performance is built on three conditions: 1 - Maintenance proficiency – Maintenance personnel from manager to worker are proficient in all aspects of management, control and work execution. 2 - Knowledgeable support – All mining departments understand the help needed to make maintenance successful and provide it. 3 - Strategic direction – Mine managers assign mutually–supporting departmental objectives, provide policies to guide interdepartmental actions and verify performance. The one proven answer that meets these conditions is a quality maintenance program. That program must spell out who does what, how, when and why. These guidelines must be applied to the nine essential maintenance management phases: How to (1) Request or (2) Identify work, (3) Classify it to determine the best reaction, then how to (4) Plan, (5) Schedule, (6) Assign, (7) Control and (8) Measure the resulting work and finally, (9) Assess accomplishments against goals such as performance standards and budgets. All personnel in maintenance as well as those who interact with maintenance must be included in the program since every maintenance action requires a supporting or cooperative interdepartmental reaction. Just as the maintenance planner follows specific planning procedures, so must the purchasing agent who orders major component replacements for the job the planner is organizing. After 44 years as a mining maintenance management consulting in all types of mining operations, I can confidently state that the absence of a quality program will preclude meeting these three conditions and frustrate all efforts to achieve superior maintenance performance.