Resources search results " versatility"

All You Need To Know About Cage Mills
Stedman Machine Company
All You Need To Know About Cage Mills Cage Mills have a high ratio of size reduction after a single pass through the cages. Here's why, and how. Hands down one of the most versatile size reduction machines and one of the hardest working is the cage mill. There are several varieties of cage mills, but their similarities are more numerous than their differences. They all are internally fed impactors that can crush, grind or pulverize many different materials to specified degrees of fineness. History By 1900, Nathan Stedman had built more than one hundred cage mills designed exclusively to crush coal. Soon other applications were discovered, leading to the increased use of cage mills for crushing such products as chemicals, clay and fertilizer materials. Multiple-row cage mills – two-, four- and six-row -- were commonplace. It was not until the 1930s that the true value of cage mills in the production of agricultural limestone and the crushing and beneficiation of stone and gravel was realized. Cage Mill Pulverizers The cage mill was so popular the Stedman Machine Company became part of farming vernacular -- farmers began referring to agricultural limestone as “Stedman Lime” due to the cage mill's unique capability to create the proper material fineness in just one pass through the crusher. Single-row cage mills were used extensively in the construction of the pioneered Pennsylvania Turnpike, primarily for the beneficiation of aggregates. Beneficiation is an elementary process, but it still is one of the most widely practiced applications of single-row cage mills. Gravel is passed through the mill and the softer, undesirable particles; -- breaking more readily than the harder ones; -- are screened or washed away, leaving a hard, high-quality aggregate. Versatility New uses are constantly being discovered for these versatile workhorses, but the nature of cage mills is such that improvements in them tend to be gradual and evolutionary instead of dramatic and revolutionary. The cage mill can be applied to effectively crush, grind and pulverize a broad array of abrasive and non-abrasive materials, including wet sticky types. The latest technology incorporated in these high-efficiency design mills insures greater crushing capacities, finer grinds and cleaner, safer operation. Fundamentally, cage mills are crushers capable of reducing or disintegrating many kinds of materials to small pieces. They reduce materials solely by impact and range in size from as small as 18 inches to as much as 72 inches in diameter. However, custom units may range as high as 96 inches in diameter. In general, the larger the mill, the lower the cost of operation when measured against tons of output. Operation Cage Mill Size Reduction Equipment A typical cage mill has only one part that moves - the rotor assembly. The material to be crushed is fed into the center of the rotor, or cage, through an intake hopper. The massive bars of the spinning cage aligned in rows strike the material and smash it into particles. The particles are then thrown against subsequent rows, other particles and the cage housing where they impact against breaker plates. Every impact - against cage bar, breaker plate or another particle - tends to reduce the original matter further, into more numerous and smaller pieces. By the time the material finally escapes from the cage mill, it has been thoroughly crushed. The major difference compared to other size reduction methods is the absence of close clearances between the crushing part and the breaker plates, allowing for less maintenance and higher efficiency of the machine. Also, they do not require grate bars as the principal source of impact in the cage mill are the pins of the revolving cages. Impact crushing, particularly impact crushing that uses the most suitable cage mill available, has a number of advantages over compression crushing. Cage mills produce a more cubical product of consistently high quality and they are capable of a very high ratio reduction. There is no decrease in quality of the product even after long periods of operation. Cage mills represent a lower initial investment than most other types of crushing equipment and maintenance is easy and inexpensive to perform. Application Cage Mill Manufacturer The wisest and most effective use of cage mills depends on a proper understanding of them, of how they are made and what they will and will not do. Multi-row mills typically consist of an even number of cages: two, four or six. The cages are arranged concentrically, with each row spinning in the opposite direction from that of the row adjacent to it. Two motors are required. They are mounted on opposing sides of the mill, where they turn in opposite directions. One, two or three rows may be mounted on each shaft. A multi-row cage mill utilizes multiple stages of selective impact reduction. The material to be reduced is fed into the center of the innermost cage, where it is struck by the massive spinning pins and distributed 360 degrees around the cage. Centrifugal force and the impact of the pins causes the material, now reduced to smaller pieces, to pass through the cage into the pins of the next row, which is spinning in the opposite direction. The farther away from the center cage the particles travel, the more their impact velocity is increased. In the process of being thrown from row to row the particles also strike each other. They finally are thrown against tough breaker plates that line the inside of the housing. After many violent strikes against the pins, the breaker plates and each other, the much-reduced particles are caught by the outer housing and allowed to drop through the discharge at the bottom of the housing. Size Control Properly presetting the speed of the cages allows the succeeding rows, moving from the innermost outward, to act principally on the particles that have not yet been reduced to the desired size. Particles that have been crushed sufficiently tend to pass through the subsequent rows without being materially affected. Thus, over crushing or under crushing is effectively controlled by adjusting the speed of the cages. All cage mills are fed internally - - the material to be crushed is dropped into a hopper, from which it travels by chute into the center of the innermost row. It falls from the chute onto the spinning pins of the cage, which strike the falling pieces of feed and explode them into many smaller pieces. The particles are propelled by centrifugal force from the innermost cage into the pins of the adjacent row, which is spinning in the opposite direction. Cage Mills for Aggregates Particles that are still too large are struck by the pins of the second row and reduced further. The reduction process continues through any additional rows that may be part of the machine. The impact velocity of the particles increases as the centrifugal force carries them outward from one cage to the next until they finally strike the mill housing and drop toward the large discharge opening at the bottom of the housing. Controlling the speed at which the cages revolve allows the operator to control the amount of reduction that takes place. That is, if the speed is properly preset and controlled, the material will be reduced to its desired size at some point during its trip through the cage mill and then virtually no further reduction will have to take place. The selective impact crushing that is a characteristic of cage mills minimizes the amount of oversize and undersize particles to be found in the finished product. The design of the cages controls the path that the material will flow through the machine. This makes it possible to concentrate the wear on the pins, which are made of very hard alloys to give maximum possible service before they have to be replaced.
Expect More from your Horizontal Shaft Impactor
Stedman Machine Company
By Eric Marcotte The mineral processing industry usually evolves rather than revolutionizes, but the Horizontal Shaft Impactor (HSI) has revolutionized the crushing process in numerous industries.32 IMPACTOR 400 There are several varieties of the HSI, and their similarities are more numerous than their differences. All varieties feature externally fed horizontal rotors with breaker bars, which propel material into a series of apron-mounted breaker plates that crush or pulverize many different types of materials to specified degrees of fineness. In 1946, Dr. Erhard Andreas of Muenster, Germany, patented the “Andreas Impact Crusher System.” His design utilized old torpedo tubes and steel from decommissioned tanks. Since then, there have been many unique features of the design patented, but they all operate similarly. This article reviews current techniques employed to get the most from this versatile design. Versatility Reduction ratios of up to 30:1 are achievable in a single stage. The simple design offers low capital and operating cost. Low headroom requirements make it easy to install. Product sizes may be varied by changing rotor speed and the clearances between rotor breaker bars (also called blow bars or hammers) and apron breaker plates. HSI applications have gone beyond soft and nonabrasive materials such as limestone, phosphate, gypsum and weathered shales, to harder minerals thanks to the introduction of alloy steel rotor breaker bars. Typical alloy steels contain manganese and/or high or medium chromium content. There are many different crushing chamber designs on the market, and proper selection will depend on the knowledge of the application for proper feed, crushing chamber configuration, metallurgy of the crushing chamber components, gap setting and rotational speed. Finally, computer controls can automatically adjust HSI settings on the fly to adjust for wear or changing specs. Operation HSIs have a lined crushing chamber with rotating breaker bar rotor on a horizontal axis. The size reduction takes place quickly along short fracture lines, producing a more cubical product to meet aggregate specifications. This fast impact fracture is different from the slow compression breaking in cone or jaw crushers that produce more slabby or flat material (5:1 length to height ratio). 32 IMPACTOR2 400Feed enters the primary crushing chamber and meets the rotor breaker bars, which impel the feed against the first apron lined with breaker plates. Impact with the rotor, the breaker plate, and inter-particulate collision all contribute to comminution. Material is reduced in the primary chamber and passes by the front apron breaker plate gap, entering the secondary and, in some configurations, tertiary chambers, for final reduction. A high percentage of the initial size reduction comes from the first impact with the rotor breaker bar. Aprons are shaft suspended at the front and from a spindle in the rear, allowing for continuous gap adjustment as wear progresses. Unlike hammer mills, the open discharge impactor has no screens or grates holding material inside the crusher; material is efficiently processed at high rates for low costs. The rotor breaker bars operate best at specific speed ranges for maximum results. As the total processing capacity and rotors get larger, the number of breaker bar rows increases. On smaller sizes, there are only two rows; on larger rotors, there are four or more rows of rotor breaker bars. The optimum configuration has material delivered to each row of rotor breaker bars in a continuous bed over the width of the rotor for optimum performance and consistent wear part utilization. Some rotor interiors are open, and some are closed depending on feed conditions. For example, concrete recycling requires a closed rotor so rebar doesn’t get entangled. Application The HSI is used for all types of material with compressive strength less than about 20,000 lb. per sq. in. It’s widely used for sand and rock for roads, railways, reservoirs, electrical grid isolation, building materials and many industrial applications such as metal reclamation and recycling.34 IMPACTOR3 400 Wear part metallurgy is critical to proper applications and performance. It’s a good idea to keep a log of these items to determine the best wear part selection and maintenance schedule: feed and discharge information, throughput rates, change out records and measurements of worn parts. Proper selection of wear part metallurgy will result in optimum production rates; longer maintenance cycles and fewer changeouts, which reduce costs in labor, increase the wear part’s life as well as reduce downtime. Materials with high moisture content can be successfully handled by using heaters and air cannons to reduce and dislodge material adhering to the crushing components and chamber. Size Control The spacing between rotor breaker bars and breaker plate aprons can be adjusted to produce different products within one crusher. It is possible to crush soft raw material limestone or high-grade harder limestone for cement or asphalt applications with one crusher by externally adjusting the breaker bar and plate settings. Gap adjustment between the rotor breaker bars and breaker plates by manual or computer controlled systems adjusts the crushing gap so that product particle size distribution remains constant. Maintenance HSIs have multi-turn breaker bars for extended life before changeout. Design simplicity offers safe and easy access for breaker bar replacement and access to all areas of the crushing chamber. Front-opening models eliminate the need for a crane in some cases. Rear-opening models can allow unique installation applications. Summary 34 IMPACTOR 400 HSIs have evolved from humble beginnings through improved crushing chamber design and metallurgy advancements to automation controls. HSIs have proven they are capable of size reduction of all types of material sizes and hardness with minimal maintenance and excellent cubical particle size distribution control. Stedman Machine Co., www.stedman-machine.com Eric Marcotte is inside sales manager for Stedman Machine Company