Resources search results "control loops"

Process Control Training—Simulators Are Only Half the Story
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model.  Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:Process objective of each process system, comprising a group of unit operations.Process objective of each unit operation.Process chemistry and the variables affecting it.Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.Plant control loops, interlocks, and alarms.Safety issues related to the process and control schemes.Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks.Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training. 
PROCESS CONTROL TRAINING— SIMULATORS ARE ONLY HALF THE STORY
PERFORMANCE ASSOCIATES INTERNATIONAL
With reference to greenfield plant projects, using process simulators similar to the designed plant Human-Machine Interface (HMI) or Distributed Control System (DCS) has become common practice. These simulators represent a “virtual plant” based on process modeling of the circuit chemistry and thermodynamics, and on the physical nature of the plant, including equipment, valves, piping, etc. The virtual plant allows trainees to troubleshoot problems, optimize process variables, react to alarms, etc., all based on the process simulation model. Performance Associates’ experience is that this complex simulator training is valuable, but only after more in-depth training on the process and control logic. To truly optimize a process plant, prior to simulator training, the control room operators must have detailed knowledge of the following:  Process objective of each process system, comprising a group of unit operations.  Process objective of each unit operation.  Process chemistry and the variables affecting it.  Important characteristics of each unit operation, the variables affecting it, and the impact on downstream unit operations.  Plant control loops, interlocks, and alarms.  Safety issues related to the process and control schemes.  Operating procedures for start-up and shutdown under various scenarios, as well as important operator tasks. Additionally, trainees must be intimately familiar with the applicable fundamental scientific concepts, such as pressure, temperature, heat exchangers, electricity, PID control logic, combustion, etc. With this fundamental and plant-specific foundation, the process simulator can be fully exploited for training.
Gold Mill Grinding—Example of a Detailed eLearning Operator Training Module
PERFORMANCE ASSOCIATES INTERNATIONAL
This video provides an example of the content and structure of a Performance Associates International computer-based operator training program. In this video, we focus on the user experience of our eLearning module for operators in a gold mill grinding circuit. This example demonstrates the following program features: • Language toggle controls. • Interactive process flowsheets. • Process descriptions. • Principles of operation. • Workbook feature. • Equipment (SAG mill) 3D animation. • Process variables. • Control loops. • Interlocks. • Alarms. • Interactive plot plan. The grinding circuit is just one of 11 modules included in the complete plant operator training program. Each individual module covers the technical aspects of a specific plant area. The program also contains modules presenting basic introductions to many applicable unit operations and a variety of basic mechanical skills. Additionally, detailed maintenance training modules cover each significant piece of equipment in the plant. A comprehensive training component to develop supervisory skills is included as well. Building, running, and maintaining a new plant is a significant investment. A work-force well-trained from top to bottom is the best way to protect that investment by ensuring a successful start-up and continued operations at peak performance. If you are building a plant and preparing your operators and supervisors for start-up and operation, please stop and ask the question “what components of this training program do I NOT want my operations team to be thoroughly familiar with?”